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The Molecular Mechanism of Insulin Resistant and Glycogen Synthase 

Kinase 3β In the Progression of Alzheimer's disease In Type 2 Diabetes 

Mellitus Patients 
 

Abstract: Type 2 Diabetes mellitus (T2DM) is characterized by high blood 

sugar caused by a lack of insulin, insulin resistance, or both. It's linked to the 

onset of secondary problems, which can lead to a variety of co-morbidities. 

Recent research has found that diabetics are more likely to acquire cognitive 

impairment or dementia. Diabetes is linked to a number of neurological illnesses, 

including Alzheimer's disease (AD). Evidence of a relationship between diabetes 

and AD is growing. Insulin signalling disruption in the brain has been discovered, 

resulting in increased tau protein phosphorylation (hyperphosphorylation), a 

hallmark and diagnostic of AD pathology, and the buildup of neurofibrillary 

tangles (NFT). Insulin malfunction in the brain has been shown to modify 

glycogen synthase kinase-3β (GSK-3β) activity, resulting in increased β amyloid 

and tau phosphorylation in diabetics. GSK-3β signalling has been implicated in 

the physiological and pathological processes of diabetes and AD, respectively. 

This could explain why diabetic individuals have a higher chance of developing 

AD as their diabetes progresses and they get older. Interestingly, several in vivo 

investigations with oral antidiabetic medications and insulin treatment in diabetic 

patients showed improved cognitive function and lower tau hyperphosphorylation. 

The relationship between T2DM and AD as it relates to amyloid and tau 

pathology will be discussed in this article. A better knowledge of the relationship 

between T2DM and AD could transform how researchers and doctors handle both 

diseases in the future, potentially leading to new therapies and prevention 

techniques. 
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1.INTRODUCTION 
Type 2 Diabetes mellitus (T2DM) is characterized by high blood 

sugar caused by a lack of insulin, insulin resistance, or both. It's linked to 

the onset of secondary problems, which can lead to a variety of co-

morbidities. Recent research has found that diabetics are more likely to 

acquire cognitive impairment or dementia. Diabetes is linked to a number 

of neurological illnesses, including Alzheimer's disease (AD) (Talbot et 

al., 2012; Chen et al., 2014; Yaffe et al., 2004; Mushtag et al., 2014; 

Willette et al.,2015). The most prevalent cause of dementia in the elderly 

is AD. Extracellular β amyloid (Aβ) containing senile plaques, 

intracellular hyperphosphorylated Tau containing neurofibrillary tangles 

(NFT), neuroinflammation, synapse loss, and neuronal death are all 

symptoms of AD. Aging and the allele of the apolipoprotein E 4 are both 

known risk factors. T2DM has recently been identified as an additional risk factor for AD. T2DM and AD have 

comparable pathophysiologies, such as insulin resistance, altered glucose and lipid metabolism, inflammation, and 

oxidative stress, according to mounting data (Talbot et al., 2012; Chen et al., 2014; Yaffe et al., 2004; Mushtag et al., 

2014; Willette et al.,2015).  
  

Once upon a time, the brain was supposed to be an insulin-insensitive organ. Insulin, on the other hand, is now 

universally acknowledged to play a significant role in neuronal survival and brain function. Insulin is essential for brain 

synaptic plasticity, which aids learning and memory (Chiu et al., 2008). Insulin also promotes the production of dendritic 

spines and synapse, neural stem cell activation, neurite growth and repair, and neuroprotection (Apostolatos et al., 2012). 

As a result, changes in insulin metabolism and signalling in the Central Nervous System (CNS) can play a role in the 

development of a variety of mental illnesses.  
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Many animal and clinical investigations have 

demonstrated a link between neurodegenerative 

illnesses like AD and altered insulin signalling in the 

central nervous system over the last 25 years 

(Kleinridders et al., 2014; Biessels et al., 2014), 

demonstrating that insulin resistance and decreased 

insulin activity may play a role in the aetiology of 

certain brain diseases through several pathways. 

Following that, we'll go over the primary 

pathophysiological links between AD and T2DM, 

emphasising the role of a malfunctioning insulin 

transduction pathway in neurodegenerative 

determinism. We'll look at how insulin signalling and 

Glycogen synthase kinase 3β (GSK3β) play a role in the 

creation of intracellular neurofibrillary tangles (NFTs) 

and the deposition of Aβ plaques, two hallmarks of AD 

pathology. 

 

2. Molecular Mechanism of Insulin Resistant in 

Type 2 Diabetes Mellitus with Alzheimer's disease 

Insulin resistance in the brain is becoming better 

recognised as a component in the development of AD. 

A robust link between insulin signalling and Aβ 

metabolism has been discovered in several 

investigations. Aβ oligomers, such as dimers, trimers, 

and dodecamers (Aβ *56), are particularly harmful in 

AD. GSK3β is activated by cerebral insulin resistance, 

resulting in an increase in Aβ synthesis and Tau 

phosphorylation (Felice., 2013; Avrahami et al.,2013; 

Phiel et al.,2003). Insulin resistance was found to 

increase extracellular Aβ deposition by increasing the 

activity of the enzyme γ - secretase, which is involved 

in Aβ synthesis, and therefore encouraging Aβ secretion 

from neurons (son et al., 2012). Insulin, on the other 

hand, inhibits GSK3β activity, preventing the formation 

of Aβ and hyperphosphorylated Tau (DaRocha-Souto et 

al., 2012). The transgenic animals displayed 

hippocampus insulin resistance, according to studies 

employing transgenic AD mouse models (Bomfim et 

al., 2012). After being fed a high fat diet, leptin 

deficient mice, a T2DM model, showed altered brain 

insulin signaling and cognitive deficits (Gao et al., 

2015; Ramos-Rodriguez et al., 2013). Insulin receptor 

substrate-1 (IRS-1) phosphorylation at serine residues, a 

hallmark of insulin resistance, was shown to be 

significantly increased in postmortem AD brains. 

Insulin resistance is also linked to a reduction in 

synaptic plasticity (Grillo et al., 2015). In an AD animal 

model, insulin treatment reduced chronic 

neuroinflammation and microglia activation while also 

improving synapse formation (Adzovic et al., 2015; 

Chen et al., 2014). These investigations demonstrated 

links between AD, cerebral insulin resistance, and 

T2DM. 

  

Figure 1 depicts a model that links between T2DM, 

cerebral insulin resistance, and AD pathogenesis. 

Through GSK3β, hyperinsulinemia, oxidative stress, 

and advanced glycation end products (AGEs), T2DM 

and the metabolic syndrome may exacerbate AD 

pathogenesis (Eldar-Finkelman et al., 1997) 

Hyperinsulinemia in T2DM may impair A clearance 

through competitive inhibition of the insulin degrading 

enzyme (IDE), which is a key regulator of Aβ levels in 

neural cells. Through a number of shared or 

contemporaneous pathways involving predisposing 

genes and environmental variables, brain insulin 

resistance may develop in tandem with T2DM. T2DM 

related hyperinsulinemia may cause brain insulin 

resistance by reducing insulin receptor expression and 

receptor kinase activity (Kim et al., 2011) and, as a 

result, increasing Aβ and tau pathology. Inversely, or 

even reciprocally, abnormal oligomeric or fibrillar Aβ 

can cause brain insulin resistance. Aβ has a similar 

sequence to insulin and can attach to the insulin 

receptor directly, causing insulin resistance (Xie et al., 

2002).  
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Figure: 1 
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3. Molecular Mechanism of GSK3β in Type 2 

Diabetes Mellitus with Alzheimer's disease  

GSK3β is a key regulatory kinase that plays a role in 

a variety of processes including glycogen metabolism, 

apoptosis, protein synthesis, cell signalling, cell 

transport, gene transcription, proliferation, and 

intracellular communication. Many substances linked to 

AD have been discovered to interact with it, including 

the microtubule-associated protein tau, presenilin 1, the 

Aβ peptide, amyloid precursor protein (APP), and 

acetylcholine. GSK3β may also have a role in brain 

ageing and lifespan
 
(Vinothkumar et al., 2021). 

  

T2DM is caused by a lack of insulin secretion 

caused by islet β cell failure, which can be congenital or 

acquired. Although the specific mechanism is unknown, 

it could be linked to glucose toxicity, lipid toxicity, 

inflammatory response, oxidative stress, and other 

variables (Nolan 2014; Donath et al., 2003; Robertson 

et al., 2007). GSK3β is one of the primary mediators of 

islet β cell apoptosis, and it's linked to insulin 

insufficiency (Robertson et al., 2004). Excessive 

activation of GSK3β resulted in a reduction in islet β 

cell proliferation in DM model mice (Liu et al., 2008). 

Islet β cells are endocrine cells in the body that release 

insulin, which helps to regulate blood sugar levels. 

Endogenous GSK3β inhibits the PI3K/Akt signaling 

pathway, which controls islet β cell development, and 

therefore plays a key role in blood glucose regulation. 

  

Insulin modulates the equilibrium between Aβ 

anabolism and catabolism via regulating peripheral Aβ 

and tau metabolism, which controls Aβ release in the 

brain through modulating APP metabolism (Suzanne, 

2012). T2DM and AD may be linked by changes in Aβ 

production and degradation caused by insulin 

deficiency or action. Deficiencies in insulin dependent 

pathways may increase GSK3β activation, which has 

been linked to an increased risk of AD. In the context of 

Aβ toxicity, T2DM alters mitochondrial antioxidant 

mechanisms and supports brain weakening
 
(Suzanne, 

2012). 

 

A previous clinical study found that hyperglycemia 

induced islet β cell loss is associated with increased 

oxidative stress, and that some enzymatic markers of 

oxidative stress are similar in mild cognitive 

impairment (MCI) and AD patients, implying that 

oxidative damage could be a key factor in the 

development of severe cognitive impairment (Padurariu 

et al.,2010). According to studies, elevated oxidative 

stress causes APP cleavage and Aβ generation, and 

increased Aβ causes LPO levels (Butterfield., 1997; 

Tabner et al., 2005). According to Grimes and Jope 

(2001), oxidative stress activates GSK3β in neuronal 

cells, while GSK3β inhibition regulates oxidative stress 

in neuronal hippocampus cell lines (Lee et al., 2007). 

GSK3β and oxidative stress are linked, according to this 

discovery. 
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4. CONCLUSION  

We endeavoured to highlight the rising body of 

literature that portrays the shared pathophysiology of 

T2DM and AD, as well as expound on the underlying 

molecular pathways at the crossroads of these two 

diseases, in this review. GSK3β is the main rate limiting 

enzyme for glycogen production suppression in T2DM. 

More significantly, it is one of the leading causes of 

insulin insufficiency and resistance, and insulin 

resistance is a hallmark of T2DM development and 

progression. GSK3β is involved in both 

hyperphosphorylation (NFT creation) and APP 
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metabolism (Aβ generation) in AD. While insulin 

resistance in T2DM can generate Aβ deposition, which 

is removed by tau, excessive tau phosphorylation can 

exacerbate Aβ neurotoxicity, damage the brain, and 

impair cognitive function. GSK3β may not only be a 

promising therapeutic target, but also a key hint to 

overcoming the AD Mountain. T2DM with AD has the 

potential to deliver a multitude of preventative and 

therapeutic techniques to existing patients, despite the 

fact that the specific mechanisms connecting T2DM 

and AD remain convoluted and ambiguous, which may 

have disastrous socioeconomic repercussions on public 

health and healthcare systems. For the time being, it 

appears that more anti T2DM medications with positive 

benefits against cognitive impairment will be 

investigated. 
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